+ COMPETENCE INDUSTRY MANUFACTURING 4.0

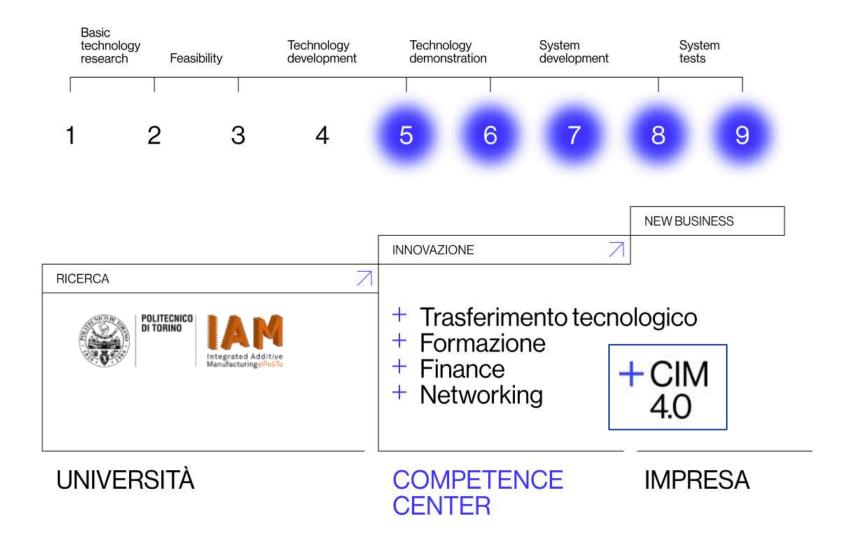
Analisi dei costi e produttività reale del processo di fusione a letto di polvere metallica con sorgente laser

Flaviana Calignano¹, Federico Giuffrida¹, Luca Iuliano^{1,2}, Vincenza Mercurio¹, Enrico Pisino²

1: Politecnico di Torino, Centro di Additive Manufacturing (IAM@PoliTo)

2: Competence Industry Manufacturing 4.0, (CIM 4.0)

PREMESSA



- ✓ Il <u>Centro IAM@Polito</u> e il <u>CIM 4.0</u> operano in modo integrato e sono punti di riferimento internazionali per la tecnologia di additive manufacturing per la dotazione di attrezzature, l'attività di ricerca e trasferimento tecnologico e l'offerta formativa.
- ✓ L'ampia dotazione hardware (30 sistemi di cui 22 presso il Centro IAM, 8 presso il CIM 4.0) e software, consente di sviluppare attività di ricerca e trasferimento tecnologico da TRL 1 a TRL 9 a 360° sull'AM: dalla produzione delle polveri al collaudo dei componenti con la tomografia.
- ✓ L'attività di formazione comprende <u>l'Orientamento in Fabbricazione Additiva</u> per la laurea magistrale in Ing. Meccanica, numerosi corsi di III Livello per il <u>Dottorato di Ricerca</u>, il <u>Master di II livello in Additive Manufacturing</u> e la <u>CIM Academy</u> per l'up-skill e il re-skill del personale aziendale.

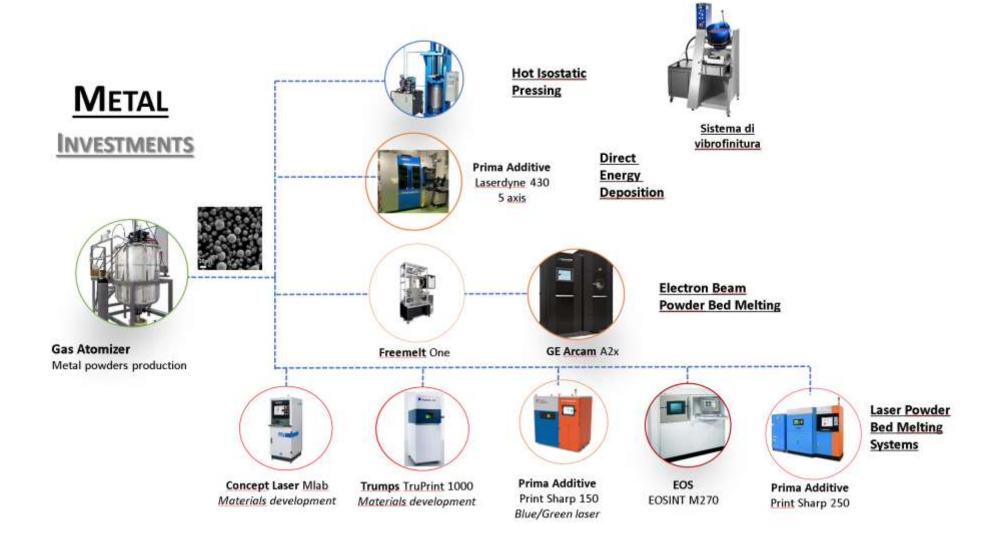
+COMPETENCE INDUSTRY MANUFACTURING 4.0

MODALITA' OPERATIVE

CENTRO IAM@PoliTo

METAL & POLYMER

SUPPLY CHAIN


55%

POST-PROCESSING ON LINE PART MATERIAL DESIGN CHARACTERIZATION (HIP, heat treatments, **PRODUCTION OPTIMIZATION PRODUCTION** MONITORING surface finishing) **Eccellence Department Resources for facilities** € 6.500.000,00 Resources for people € 600.000 Politecnico di Torino Regione Piemonte

+COMPETENCE INDUSTRY MANUFACTURING 4.0

CENTRO IAM@PoliTo

CENTRO IAM@PoliTo

POLYMER

INVESTMENTS

Stereolithography

Direct Ligth Processing

N° 3 Systems

Polyjet

Photopolymers Materials development

Selective Laser Sintering

Sinterit Lisa X

Materials Nylon Nylon glass filled

Nylon Al filled Nylon carbon filled

Fused Deposition Modeling

N° 2 3ntr A4

Stratasys Dimension Elite

Stratasys F370

Markforged Mark Two

CreatBot PEEK - 300

Materials

ABS M30 ABS ASA PC-ABS PLA HIPS Nylon Carbon PA66 GF PETG TPU Nylon Onyx Carbon fiber Fiberglass

Kevlar

ULTEM

Carbon PEEK

PEEK

CENTRO IAM@PoliTo

CHARACTERIZATION

INVESTMENTS

CERAMIC

INVESTMENTS

Materials

Photopolymer + Ceramic

Scan Box

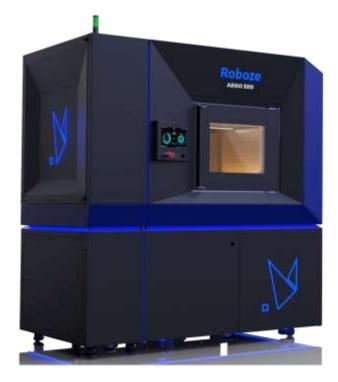
Equator

Computer Tomography

GOM Atos Core

Sistema per la valutazione delle tensioni residue

CIM 4.0



Metallo

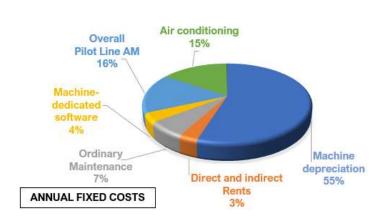
Polimero

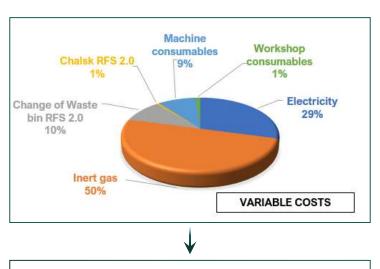
ARGO 500

Materials: PEKK, PEKK 2005, Carbon

PEKK, Carbon PA, ULTEM

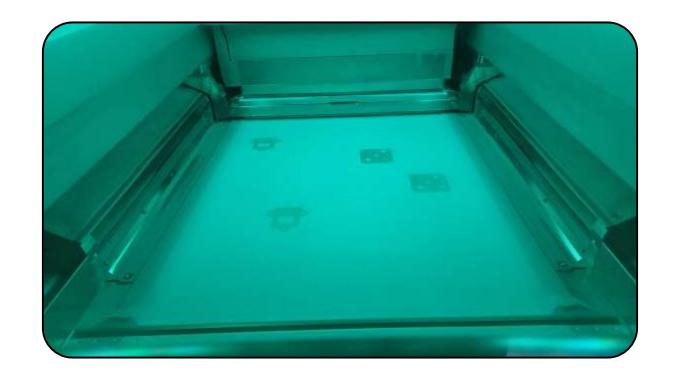
Caso studio




Centro di costo: EOS M400-4

Materiale: AlSi10Mg alloy

Spessore layer: 30 µm



Fortemente dipendente dalla produttività (tempo di costruzione T_{job})

Modellazione dei costi fortemente dipendente dal processo e diversa dalla fabbricazione tradizionale

Processo PBF-LB/M

LASER SPENTO

Tempo di Recoating: definito come il tempo che intercorre tra lo spegnimento e la riaccensione del laser. Durante questo periodo di tempo, si verificano i movimenti degli assi e la stesura della polvere.

LASER ACCESO

Tempo di Esposizione: definito come il tempo in cui il laser è attivo e si verifica la fusione dello strato di polvere.

Processo PBF-LB/M

$$T_{job} = \sum_{i=1}^{n} \left(T_{Recoating,i} + T_{Esposizione,i} \right)$$
 $_{i=\text{conteggio layer}}$ $_{$

$$Produttivit\grave{\mathbf{a}}_{teorica} = v * h_d * t$$

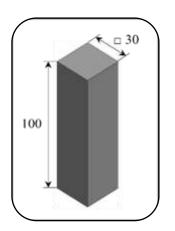
v = velocità di scansione

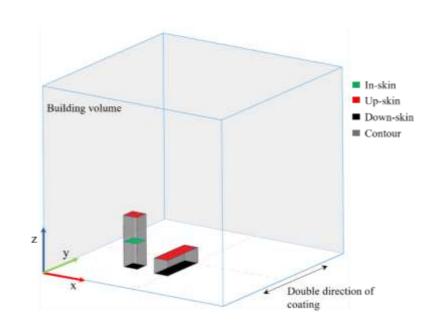
 h_d = distanza di hatching

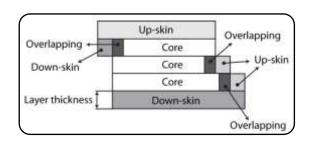
t = spessore layer

$$Produttivit\grave{\mathbf{a}}_{effettiva} = \frac{Volume_i}{Tempo\ Esposizione_i}$$

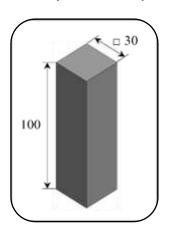
i = parte

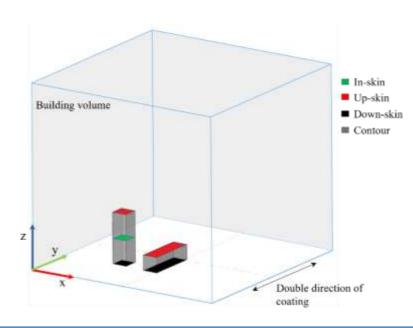

*Tempo Esposizione*ⁱ (da simulazione software)




Effetto dell'orientazione

Campione di prova

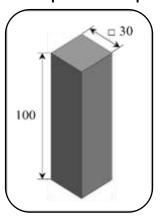


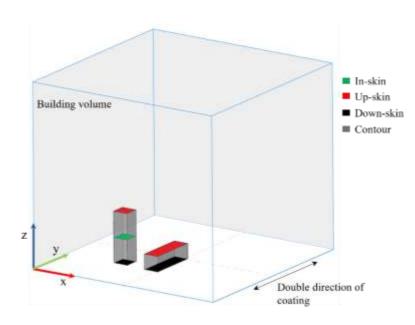

		SINGOLO RE	COATING	DOPPIO RECOATING		
ORIENTAZIONE	Numero LAYER	Tempo Esposizione	Tempo Recoating	Tempo Esposizione	Tempo Recoating	
		[h]	[h]	[h]	[h]	
VERTICALE	3333	4.05	13.75	4.05	6.45	
ORIZZONTALE	1000	3.95	4.12	3.95	1.93	

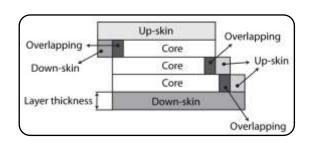
Effetto dell'orientazione

Campione di prova

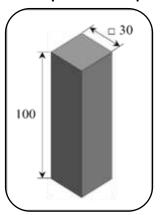
	Up-skin	Overlapping
Overlapping •	Core	/
Down-skin	Core	Up-skin
	Core	
Layer thickness	Down-skin	

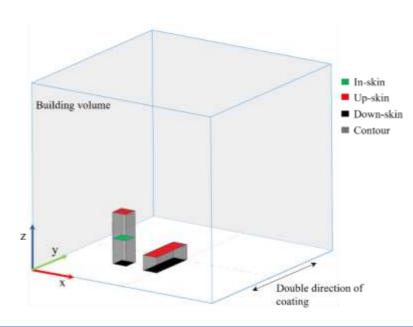

		SINGOLO RI	ECOATING	DOPPIO RECOATING			
ORIENTAZIONE	ORIENTAZIONE Numero LAYER		Tempo Recoating	Tempo Esposizione	Tempo Recoating		
		[h]	[h]	[h]	[h]		
VERTICALE	3333	4.05	13.75	4.05	6.45		
ORIZZONTALE	1000	3.95	4.12	3.95	1.93		

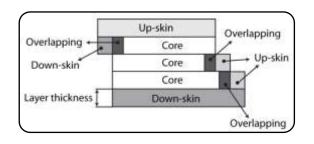

Lo stesso pezzo con orientazioni diverse sarà prodotto con tempi di esposizione diversi


Effetto dell'orientazione

Campione di prova

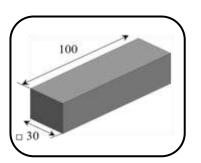

		SINGOLO RE	COATING	DOPPIO RECOATING		
ORIENTAZIONE Numero LAYE		Tempo Esposizione	Tempo Recoating	Tempo Esposizione	Tempo Recoating	
		[h]	[h]	[h]	[h]	
VERTICALE	3333	4.05	13.75	4.05	6.45	
ORIZZONTALE	1000	3.95	4.12	3.95	1.93	

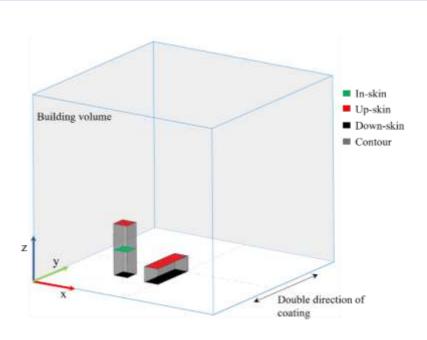

Il Tempo di Recoating diminuisce di circa tre volte passando dall' orientazione verticale a quella orizzontale

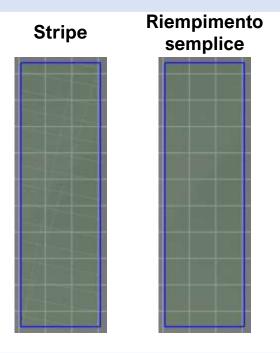

Effetto dell'orientazione

Campione di prova

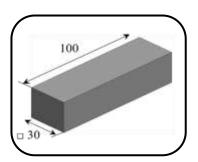
		SINGOLO RE	COATING	DOPPIO RECOATING		
ORIENTAZIONE	Numero LAYER	Tempo Esposizione	Tempo Recoating	Tempo Esposizione	Tempo Recoating	
		[h]	[h]	[h]	[h]	
VERTICALE	3333	4.05	13.75	4.05	6.45	
ORIZZONTALE	1000	3.95	4.12	3.95	1.93	

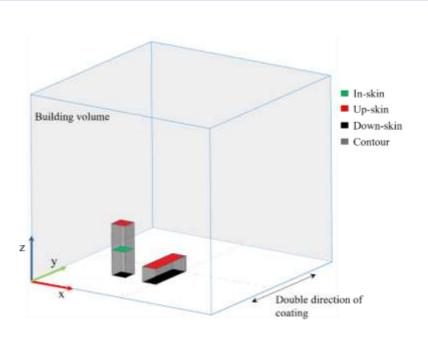

Il tempo di Recoating può essere dimezzato con la doppia direzione di stesura della polvere

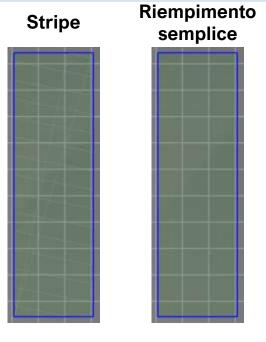



Effetto dei parametri di processo

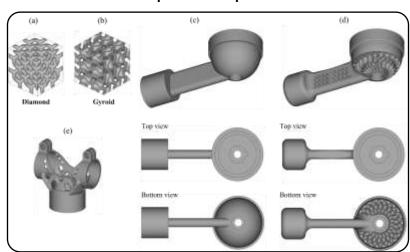
Campione di prova


		TIPO DI	ESPOSIZION	E	MODELLO DI	ESPOSIZIONE	Tempo	Produttività _{effett}	Produttività _{teor}	
CONDIZIONI	In-skin	Up-skin	Down-skin	Contour	Stripe	Stripe Semplice Espos		[cm ³ /h]	[cm ³ /h]	
I	⊘	⊘	Ø		⊘	-	3.95	22.78		
II		-	-	-		-	3.78	23.81	26.68	
111	✓	-	-	-	-		3.42	26.32		




Effetto dei parametri di processo

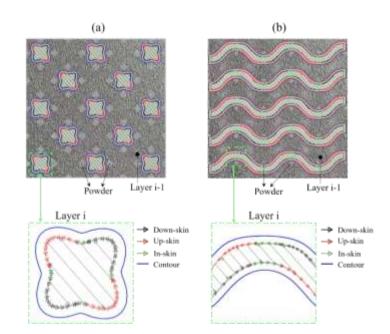
Campione di prova


		TIPO DI	ESPOSIZION	E	MODELLO DI ESPOSIZIONE		Tempo	Produttività _{effett}	Produttività _{teor}
CONDIZIONI	In-skin	Up-skin	Down-skin	Contour	Stripe	Semplice	Esposizione [h]	[cm³/h]	[cm ³ /h]
I	⊘	⊘		\bigcirc	⊘	-	3.95	22.78	
II	✓	-	-	-		-	3.78	23.81	26.68
III	✓	-	-	-	-	⊘	3.42	26.32	

La formula teorica si riferisce solo ai parametri *inskin*, con riempimento semplice.

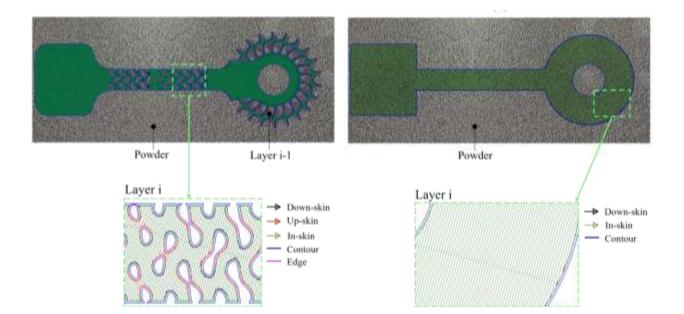
Effetto della geometria

Campioni di prova


	Volume	Tempo	Tempo	Tempo	Produttività _{teo}	Produtticità _{effett}	Costo _{teor}	Costo _{effett}
COMPONENTE	[cm ³]	Recoating	Esposizione _{teor}	Esposizione _{effett}	r	[cm³/h]	[€]	[€]
		[h]	[h]	[h]	[cm³/h]			
(a) Diamond	0.26	0.63	0.01	0.03		7.71	29	30
(b) Gyroid	0.49	0.63	0.02	0.07		7.33	29	32
(c) Replicato con AM	46.19	2.37	1.73	2.30	26.68	20.08	185	210
(d) Ottimizzato per AM	40.77	2.37	1.53	2.37		17.23	176	213
(e) Adattato per AM	13.90	4.93	0.52	0.98		14.14	245	266

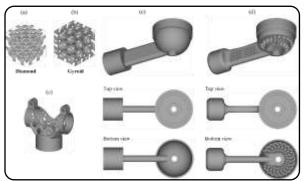
Effetto della geometria

	Volume	Tempo	Tempo	Tempo	Produttività _{teo}	Produttività _{effett}	Costo _{teor}	Costo _{effett}
COMPONENTE	[cm ³]	Recoating	Esposizione _{teor}	Esposizione _{effett}	r	[cm³/h]	[€]	[€]
		[h]	[h]	[h]	[cm³/h]			
(a) Diamond	0.26	0.63	0.01	0.03		7.71	29	30
(b) Gyroid	0.49	0.63	0.02	0.07		7.33	29	32
(c) Replicato con AM	46.19	2.37	1.73	2.30	26.68	20.08	185	210
(d) Ottimizzato per AM	40.77	2.37	1.53	2.37		17.23	176	213
(e) Adattato per AM	13.90	4.93	0.52	0.98		14.14	245	266


Le *strutture lattice in realtà* aumentano il tempo di esposizione e riducono la produttività.

Effetto della geometria

	Volume	Tempo	Tempo	Tempo	Produttività _{teo}	Produttività _{effett}	Costo _{teor}	Costo _{effett}
COMPONENTE	[cm ³]	Recoating	Esposizione _{teor}	Esposizione _{effett}	r	[cm³/h]	[€]	[€]
		[h]	[h]	[h]	[cm³/h]			
(a) Diamond	0.26	0.63	0.01	0.03		7.71	29	30
(b) Gyroid	0.49	0.63	0.02	0.07		7.33	29	32
(c) Replicato con AM	46.19	2.37	1.73	2.30	26.68	20.08	185	210
(d) Ottimizzato per AM	40.77	2.37	1.53	2.37		17.23	176	213
(e) Adattato per AM	13.90	4.93	0.52	0.98		14.14	245	266

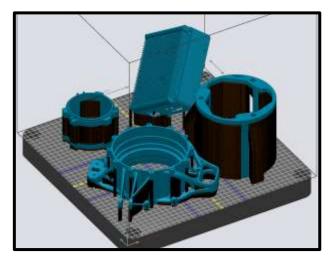


Le strutture lattice riducono la produttività

Effetto della geometria

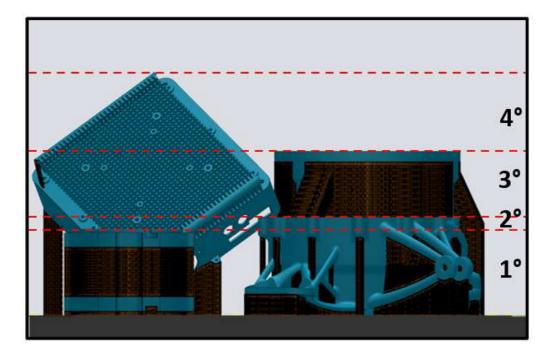
Campioni di prova

	Volume	Tempo	Tempo	Tempo	Produttività _{teo}	Produttività _{effett}	Costo _{teor}	Costo _{effett}
COMPONENTE	[cm ³]	Recoating	Esposizione _{teor}	Esposizione _{effett}	r	[cm³/h]	[€]	[€]
		[h]	[h]	[h]	[cm³/h]			
(a) Diamond	0.26	0.63	0.01	0.03		7.71	29	30
(b) Gyroid	0.49	0.63	0.02	0.07		7.33	29	32
(c) Replicato con AM	46.19	2.37	1.73	2.30	26.68	20.08	185	210
(d) Ottimizzato per AM	40.77	2.37	1.53	2.37		17.23	176	213
(e) Adattato per AM	13.90	4.93	0.52	0.98		14.14	245	266


Il **costo di produzione** di un componente, senza i costi di preparazione della macchina e di post-lavorazione, **varia a seconda di come viene calcolata la produttività**.

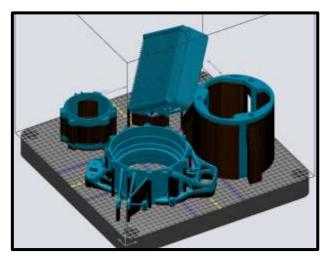
Un modello di costo basato sul volume dei pezzi [€/cm³] non è adatto a questa tecnologia!

Modellazione costi multi-commessa


Componenti

RECOATING

 $Tempo\ Recoating_{Job}*Costo\ orario = Costo\ Recoating_{Job}[\mathfrak{t}]$

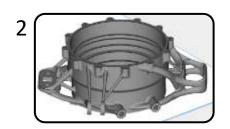

	8	P	
1° livello - (4 componenti)		⊘	⊘
2° livello - (3 componenti)		⊘	✓
3° livello - (2 componenti)			
4° livello - (1 componente)			

Modellazione costi multi-commessa

Componenti



ESPOSIZIONE


 $Tempo\ Esposizione_{job}*Costo\ orario = Costo\ Esposizione_{job}[\ \in\]$

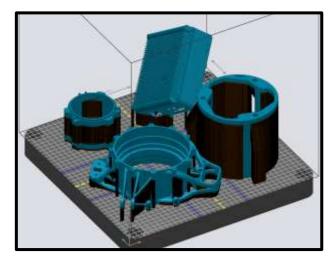
Simulazione Software \longrightarrow *Tempo Esposizione*_i i = componente

$$Produttivit\grave{a}_{effettiva} = \frac{Volume_i}{Tempo\ Esposizione_i} = \left[\frac{cm^3}{h}\right]$$

 $Produttività_{eff} = 18,7 \frac{cm^3}{h}$

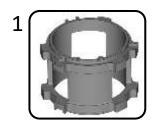
 $Produttivit\grave{a}_{eff} = 18,5 \frac{cm^3}{h}$

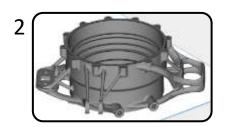
 $Produttivit\grave{a}_{eff} = 21,2 \frac{cm^3}{h}$



 $Produttivit\grave{a}_{eff} = 10,5 \frac{cm^3}{h}$

Modellazione costi multi-commessa


Componenti


Costo Recoating_i + Costo Esposizione_i = Costo Componente_i [\in]

Componente -	Assegnazione dei Costi		
	Modello proposto	Modello basato su Volume	Modello basato su Altezza
1	9 %	10 %	15 %
2	25 %	38 %	17 %
3	31 %	33 %	28 %
4	35 %	19 %	40 %

Costo job = 100%

 $Produttivit\grave{a}_{eff} = 18,7 \frac{cm^3}{h}$

 $Produttivit\grave{a}_{eff} = 18,5 \frac{cm^3}{h}$

 $Produttivit\grave{a}_{eff} = 21,2 \frac{cm^3}{h}$

 $Produttivit\grave{a}_{eff} = 10,5 \ \frac{cm^3}{h}$

Conclusioni

- Le **strutture lattice**, che negli ultimi anni sono state viste come la soluzione migliore per alleggerire un componente e allo stesso tempo ridurre i tempi di costruzione per via della minore quantità di materiale, in realtà aumentano i tempi di esposizione e quindi **diminuiscono la produttività**.
- Produttività_{effettiva} è strettamente legata alla **strategia di scansione**, alla **geometria** e all' **orientazione** dei componenti. Pertanto, la produttività effettiva è diversa per ogni componente. L'utilizzo di [€/cm³] porta a un calcolo dei costi non corretto.
- Per una valutazione corretta e realistica dei costi è necessario personale specializzato nel processo di manifattura additiva.