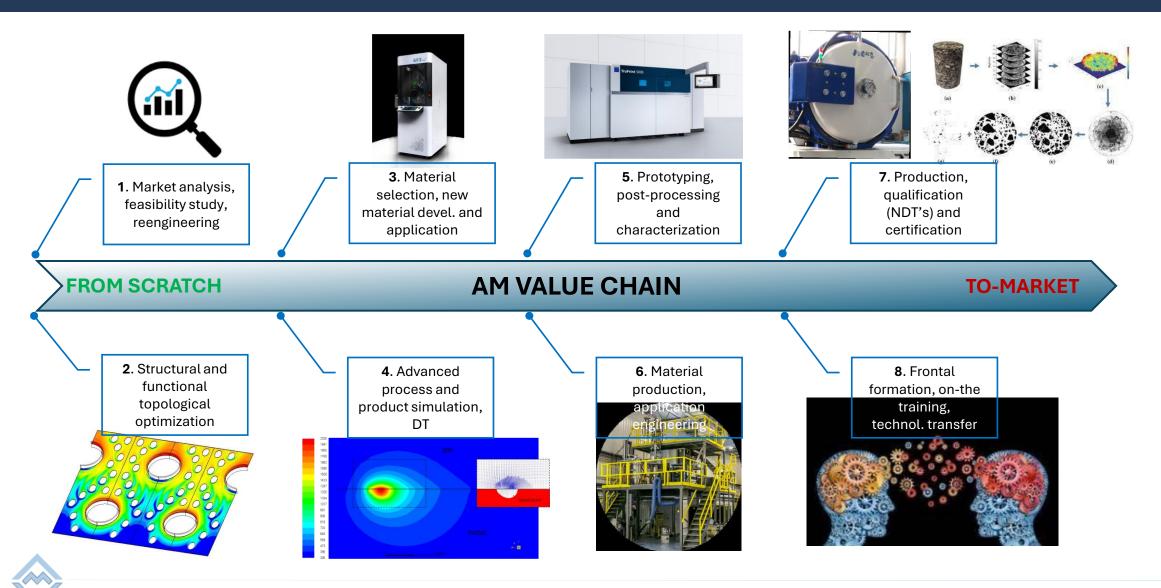


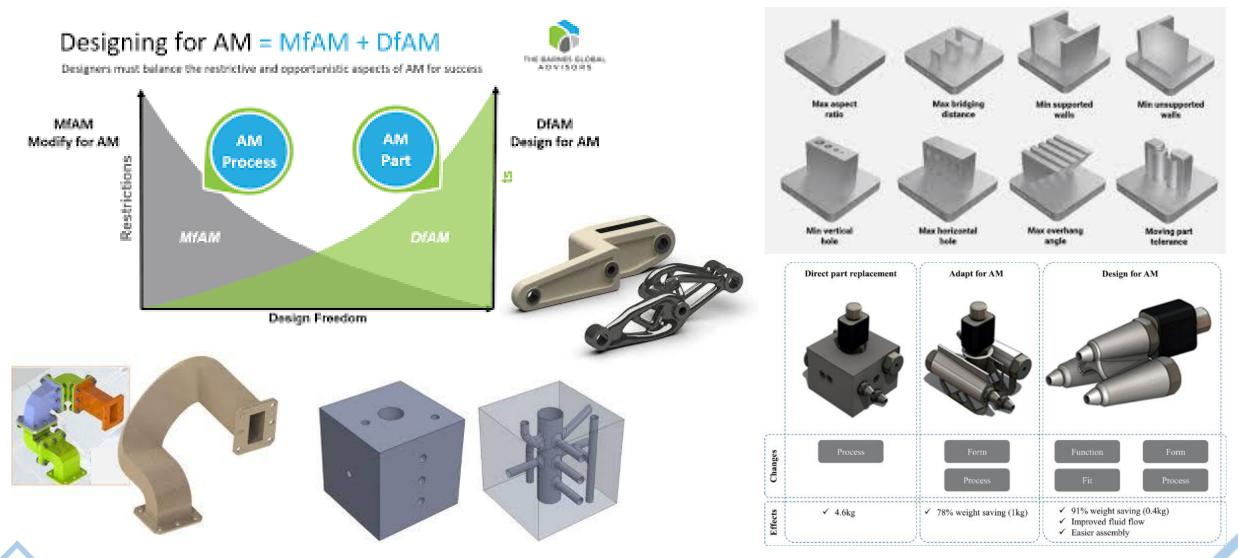
The new Competence Centre in AM and New Materials for the Industrial Value Chain and the Green Transition

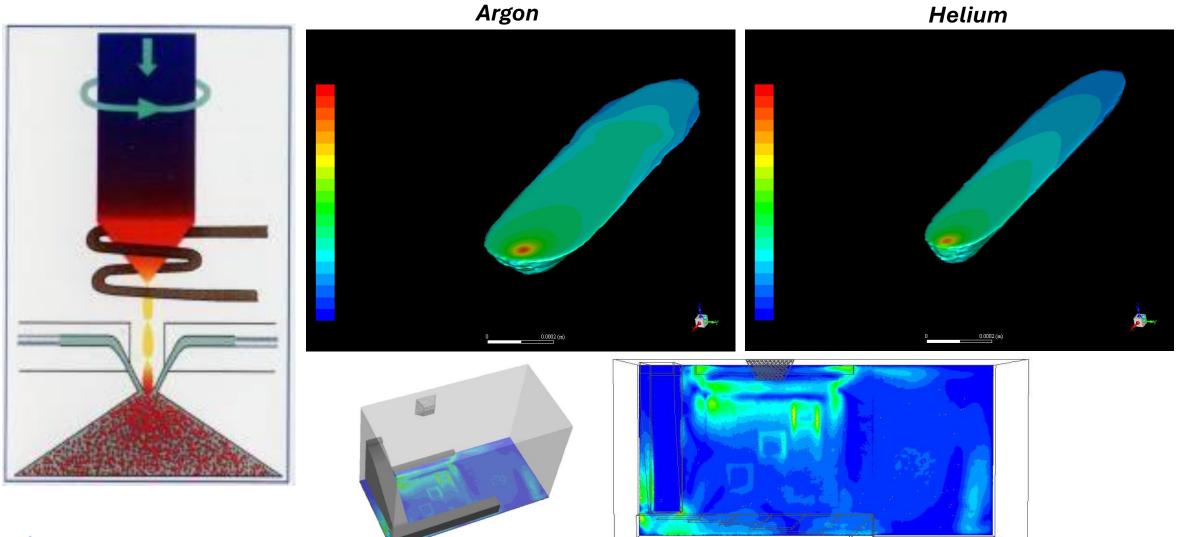
RM FORUM, Arese (MI), 25-26.09.2024

We are a Competence Center in Intelligent Additive Technologies, offering New Materials, and related post-processing and characterization for the European industry and SMEs of the present and future worldwide green competition


For additional information, please visit https://weaream.it/

www.weaream.it


From scratch to market through AM


Design for AM and Engineering @ Weaream

Simulation and modeling @ Weaream

Additive Processes @ Weaream

Laser Powder Bed Fusion **Electron Beam Powder Bed** (L-PBF) **Fusion (E-PBF)** Electron beamgun Optional build chamber LASER Source Scanner shield atmosphere (N, Ar, He **Build chamber** Build chamber Vacuum Electron beam shield atmosphere (N, Ar, He) Laser Beam Recoater Recoater Preheated powder bed Build Head (on robotic arr gantry system...) Laser Beams Substrate Substrate Substrate (optional on gantry system or similar) Powder Feed **Build Platform** Overflow Powder Feed **Build Platform** Overflow

Advantages

- High freedom in design, resolution and details

- High bulk material densities

Challenges

- High temperatures & temperature gradients

- Residual stresses
- Productivity
- Large components

Advantages

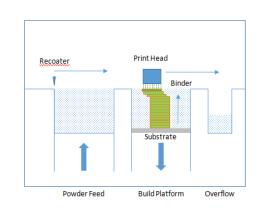
- Vacuum chamber offers protection
- High bulk material densities

- preheating and beam splitting gives control over cooling rates and temperature gradients

Challenges

- evaporation of elements with low vapor pressure
- Max. component size

Laser Wire Additive Manufacturing (L-DED)


Advantages

- Large component size
- Extremely high bulk material densities
- high productivity
- Gradient/multi materials
- multiple build directions

Challenges

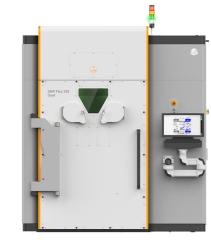
- Limit in detail (wire thickness)
- Surface roughness without machining

Metal Binder Jetting (MBJ)

Advantages

- No heat input in the process
- no protection chamber needed
- no support structure

Challenges


- binder removal and sintering afterwards
- Shrinkage
- Density and mechanical properties

Additive technologies / L-PBF Systems

© 2024 Trumpf

© 2024 3D Systems

© 2024 3D4Mec

Trumpf TruPrint 3000		3D Systems DMP 350 Flex Dual		3D4Brass		3D4Steel	
Laser	2x 700W	Laser	2x 500W	Laser	1x 1000W	Laser	1x 400W
Build Size	ø 300mm x 400mm	Build Size	275mm x 275mm x 410mm	Build Size	110mm x 110mm x 220mm	Build Size	110mm x 110mm x 220mm
	Quick facts		Quick facts		Quick facts		Quick facts
Powders can be kept under protective Atmosphere for the whole process		Exchangeable Build Modules		Internal powder cycle (sieving)		Internal powder cycle (sieving)	
		Below 25ppm O_2 due to vacuum chamber concept (lowest in class) Powders can be kept under protective Atmosphere for the whole process		Specialized for copper and its alloys		Specialized for steels	
High Productivity							

Additive technologies / E-PBF, L-DED and Atomization Systems

© 2024 Meltio

© 2024 3D Lab S.p.a.

© 2024 3D Lab S.p.a.

FreeMelt e-MELT-iD		Meltio Robot Cell		Ato+ Atomizer		AtoCast	
Energy Source	Diode EB gun	Laser	6x 200W = 1200W	Energy Source	Induction or Plasma Arc	Energy Source	Induction Melting
Build Size	ø110mm x 310mm	Build Size	Ø 1000 mm x 1200 mm (with positioner) 2000 mm x 1000 mm x 1000 mm (only robotic arm)	Build Size	Up to 1.000 cc per batch (w	Build Size	Up to 500 cc per batch (cast)
	Quick facts			IMS)	Quick facts		
Fully open E-PBF system to use a wide selection of materials Build Temperatures up to 1200°C		Quick facts		Quick facts Argon atmosphere for reactive materials Incl. passivation and sieving module		induction vacuum casting furnace	
		High Density, high build rates, large parts				Possibility to create ingots for atomization	
		Wire & min. wall thickness: 0.8 – 1.2 mm		Ultrasonic cleaning module for material changes			
		Multiple/Gradient Materials possible					

Additive technologies / New Entries

© 2024 ADDUP

ADDUP Formup 350 Evolution			
Laser	4 x 500W		
Build Size	350mm x 350mm x 1000mm		
Quick facts			
Automatic clamping and referencing			
Automatic powder handling under Argon			
Exchangeable powder modules			

HP Metal BJ S100		
Energy Source	Sintering	
Build Size	430mm x 309mm x 140mm	
Quick facts		
Resolution: 1200 x 1900 Dpi		
Including powder preparation, unpacking and sintering modules		

Materials @ Weaream

Aluminum Alloys

AlSI10Mg, AlSi10 recycled, 2000 series, Scalmalloy, more

Steels

316L, MS1, MS1 + additives, 17-4 PH, Duplex and Super Duplex, Maraging, advanced stainless steels, more

Titanium and its Alloys

Cp Ti, Ti6Al4V, Ti6Al7Nb, Ti5553, TiMo15, TiAl (Intermetal), more

Nickel and its Alloys

Inconel 718, Inconel 625, Ni, NiTi (Shape memory alloy), more

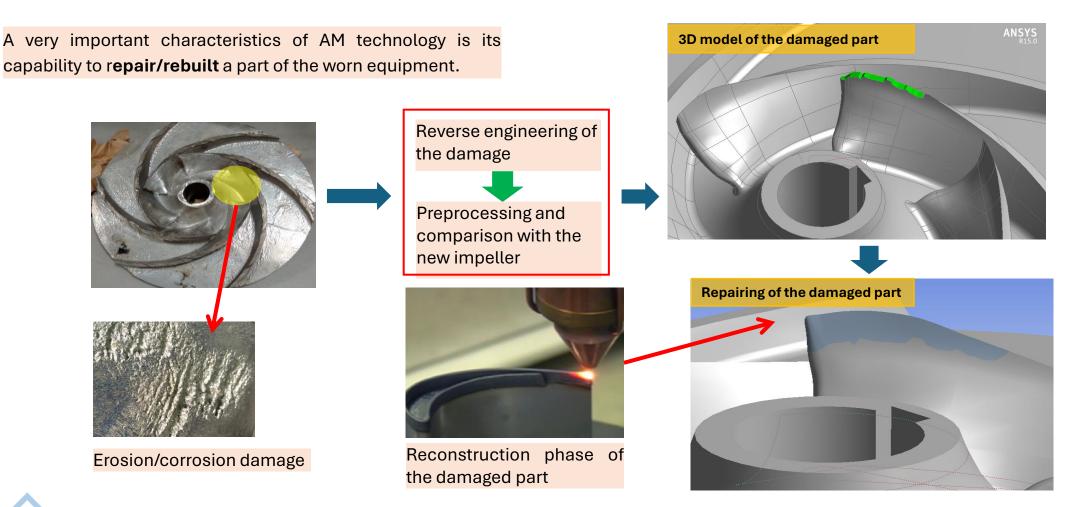
Copper and its Alloys

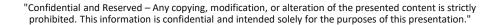
Pure Cu, GrGop42, CuCrZr, CuZn, more

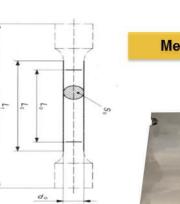
Others

SMM/HMM (FeSi6.5%, NdFeB), Metallic glasses, Tantalum, Niobium, Tungsten, High Entropy Alloy, New Materials

Critical components and tailored materials






Components Repairing and Reconstruction

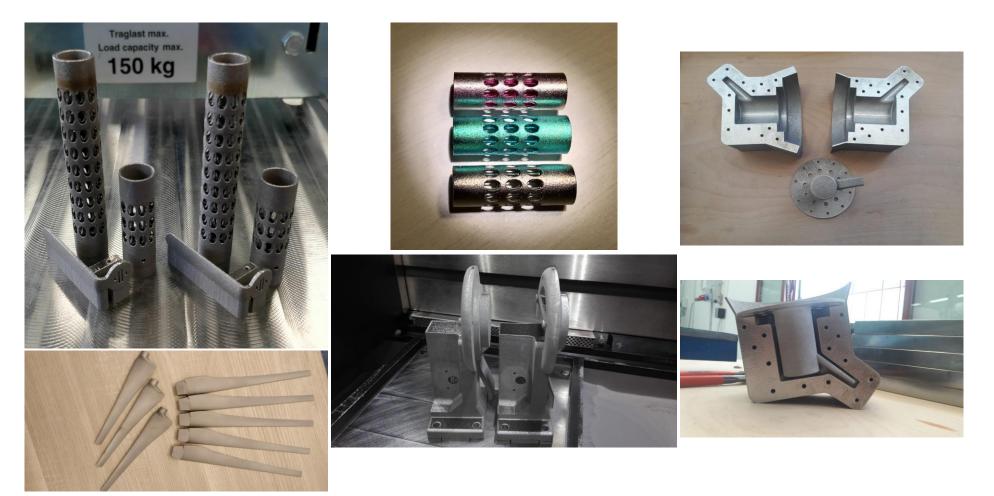
Courtesy: ENEL

Components Repairing and Reconstruction

3D model

- <u>Component</u>: pump impeller for USC thermal plant auxiliary system
- <u>Material</u>: Inconel 718 modified
- <u>Technology</u>: EOS M290
- <u>Operational conditions</u>: medium temperature and aggressive environment
- <u>Client</u>: ENEL Produzione Torre Valdaliga Nord (RM)
- <u>Present situation</u>: still running in Torrevaldaliga Nord TPP (Civitavecchia, Rome), no repair, maintenance or substitution since late 2019
- <u>Reference impeller</u>: substitution after max 10 months

"Confidential and Exidences opin Ontimes nor logralized in presented content is strictly prohibited. This information is confidential and intended solely for the purposes of this presentation."



Courtesy: ENEL

Special applications and finishing

Characterization and qualification @ Weaream

At its "low-TRL" operation site located within the AQM Campus (*large third-party testing lab*), Weaream Srl has direct access to many test facilities, including:

Mechanical and technological testing

Incl. tensile, Charpy impact toughness, fatigue, creep, corrosion

Chemical characterization of powders and bulk material

Metallurgy

Microstructure investigation, incl. SEM/EDS, EBSD, HR-TEM, XRD

Metrology

Optical (scanning), contact and non-contact measurement equipment

Thermo-physical properties, geometric features

Density, rheology, morphology, size distribution, weight, thermal

expansion coefficients, etc.

Post-Processing @ Weaream

At its "high-TRL" operation site located within BLUETEChHUB® @BUFFOLI Industries in Brescia, Weaream Srl has full access to post-processing facilities, including:

- Heat Treatments (e.g., annealing, Q&T, stress relief, sintering ...)
- HIP
- Surface treatments (e.g., polishing, finishing, puppet, PVD, CVD, laser cladding, coatings ...)
- Machining

Weaream Srl has skilled operators, researchers and manufacturing specialists, and a staff of expert managers covering any aspects of Quality Assurance and Control, Sales and Marketing, Logistics, Financials, Administration, HR, R&D, in strict cooperation with Seamthesis Srl (private international RTO, main company's shareholder and holding leader) and partners. Main collaborations:

- <u>National Universities and RTO</u>: POLITO, POLIMI, POLIBA, UNIUD, UNIBS, UNIPI, UNIPG, UNIROMA1, UNIROMA2, UNINA-FEDERICO II, UNIME; CNR, INFN, ENEA, IIT, AREA, CSMT, MARE; Ministry of University and Research (MUR), Ministry of Industrial Activities (MIMIT); Ministry of Environment and Energy Safety (MASE); BUREAU VERITAS ITALY; Competence Centre (CIM4.0, MADE, START);
- <u>EU Universities and RTO</u>: TU Graz (AU), JR (AU), TUD (DK), Chalmers U (SW), KTH (SW), CEA (FR), AIMEN (ES), CEIT (ES), Munchen U (DE), Free University of Bruxelles (BE), KU Leuven (BE), DELFT U (NL), Nottingham U (UK)
- Shareholders
- Selected suppliers: technology (e.g., Freemelt, TRUMPF, 3D4MEC, 3DLab, ADDUP, HP) and services (
- Selected clients

WEAREAM Srl Via T. Edison 18, I- 25050 Provaglio d'Iseo (BS) info@weaream.it weaream@pec.it +39 030 64.90.558

www.weaream.it